跳转至

多項式牛頓迭代

描述

給定多項式 \(g\left(x\right)\),已知有 \(f\left(x\right)\) 滿足:

\[ g\left(f\left(x\right)\right)\equiv 0\pmod{x^{n}} \]

求出模 \(x^{n}\) 意義下的 \(f\left(x\right)\)

Newton's Method

考慮倍增。

首先當 \(n=1\) 時,\(\left[x^{0}\right]g\left(f\left(x\right)\right)=0\) 的解需要單獨求出。

假設現在已經得到了模 \(x^{\left\lceil\frac{n}{2}\right\rceil}\) 意義下的解 \(f_{0}\left(x\right)\),要求模 \(x^{n}\) 意義下的解 \(f\left(x\right)\)

\(g\left(f\left(x\right)\right)\)\(f_{0}\left(x\right)\) 處進行泰勒展開,有:

\[ \sum_{i=0}^{+\infty}\frac{g^{\left(i\right)}\left(f_{0}\left(x\right)\right)}{i!}\left(f\left(x\right)-f_{0}\left(x\right)\right)^{i}\equiv 0\pmod{x^{n}} \]

因為 \(f\left(x\right)-f_{0}\left(x\right)\) 的最低非零項次數最低為 \(\left\lceil\frac{n}{2}\right\rceil\),故有:

\[ \forall 2\leqslant i:\left(f\left(x\right)-f_{0}\left(x\right)\right)^{i}\equiv 0\pmod{x^{n}} \]

則:

\[ \sum_{i=0}^{+\infty}\frac{g^{\left(i\right)}\left(f_{0}\left(x\right)\right)}{i!}\left(f\left(x\right)-f_{0}\left(x\right)\right)^{i}\equiv g\left(f_{0}\left(x\right)\right)+g'\left(f_{0}\left(x\right)\right)\left(f\left(x\right)-f_{0}\left(x\right)\right)\equiv 0\pmod{x^{n}} \]
\[ f\left(x\right)\equiv f_{0}\left(x\right)-\frac{g\left(f_{0}\left(x\right)\right)}{g'\left(f_{0}\left(x\right)\right)}\pmod{x^{n}} \]

例題

多項式求逆

設給定函數為 \(h\left(x\right)\),有方程:

\[ g\left(f\left(x\right)\right)=\frac{1}{f\left(x\right)}-h\left(x\right)\equiv 0\pmod{x^{n}} \]

應用 Newton's Method 可得:

\[ \begin{aligned} f\left(x\right)&\equiv f_{0}\left(x\right)-\frac{\frac{1}{f_{0}\left(x\right)}-h\left(x\right)}{-\frac{1}{f_{0}^{2}\left(x\right)}}&\pmod{x^{n}}\\ &\equiv 2f_{0}\left(x\right)-f_{0}^{2}\left(x\right)h\left(x\right)&\pmod{x^{n}} \end{aligned} \]

時間複雜度

\[ T\left(n\right)=T\left(\frac{n}{2}\right)+O\left(n\log{n}\right)=O\left(n\log{n}\right) \]

多項式開方

設給定函數為 \(h\left(x\right)\),有方程:

\[ g\left(f\left(x\right)\right)=f^{2}\left(x\right)-h\left(x\right)\equiv 0\pmod{x^{n}} \]

應用 Newton's Method 可得:

\[ \begin{aligned} f\left(x\right)&\equiv f_{0}\left(x\right)-\frac{f_{0}^{2}\left(x\right)-h\left(x\right)}{2f_{0}\left(x\right)}&\pmod{x^{n}}\\ &\equiv\frac{f_{0}^{2}\left(x\right)+h\left(x\right)}{2f_{0}\left(x\right)}&\pmod{x^{n}} \end{aligned} \]

時間複雜度

\[ T\left(n\right)=T\left(\frac{n}{2}\right)+O\left(n\log{n}\right)=O\left(n\log{n}\right) \]

多項式 exp

設給定函數為 \(h\left(x\right)\),有方程:

\[ g\left(f\left(x\right)\right)=\ln{f\left(x\right)}-h\left(x\right)\pmod{x^{n}} \]

應用 Newton's Method 可得:

\[ \begin{aligned} f\left(x\right)&\equiv f_{0}\left(x\right)-\frac{\ln{f_{0}\left(x\right)}-h\left(x\right)}{\frac{1}{f_{0}\left(x\right)}}&\pmod{x^{n}}\\ &\equiv f_{0}\left(x\right)\left(1-\ln{f_{0}\left(x\right)+h\left(x\right)}\right)&\pmod{x^{n}} \end{aligned} \]

時間複雜度

\[ T\left(n\right)=T\left(\frac{n}{2}\right)+O\left(n\log{n}\right)=O\left(n\log{n}\right) \]